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The motion of membrane-bound objects is important in many aspects of biology and
physical chemistry. A hydrodynamic model for this Fconfiguration was proposed by
Saffman & Delbrück (1975) and here it is extended to study the translation of a disk-
shaped object in a viscous surface film overlying a fluid of finite depth H . A solution
to the flow problem is obtained in the form of a system of dual integral equations that
are solved numerically. Results for the friction coefficient of the object are given for
a complete range of the two dimensionless parameters that describe the system: the
ratio of the sublayer (η) to membrane (ηm) viscosities, Λ = ηR/ηmh (where R and h
are the object radius and thickness of the surface film, respectively), and the sublayer
thickness ratio, H/R. Scaling arguments are presented that predict the variation of
the friction coefficient based upon a comparison of the different length scales that
appear in the problem: the geometric length scales H and R, the naturally occurring
length scale `m = ηmh/η, and an intermediate length scale `H = (ηmhH/η)1/2. Eight
distinct asymptotic regimes are identified based upon the different possible orderings
of these length scales for each of the two limits Λ � 1 and Λ � 1. Moreover,
the domains of validity of available approximations are established. Finally, some
representative surface velocity fields are given and the implication of these results for
the characterization of hydrodynamic interactions among membrane-bound proteins
adjacent to a finite-depth sublayer is discussed briefly.

1. Introduction
The observed motion and diffusion of proteins, or other membrane-bound particles,

in biological or artificial membranes are complicated frequently by the presence of
nearby rigid boundaries. A starting point for the analysis and quantitative under-
standing of these systems is the hydrodynamic model for protein motion in bilayers
presented by Saffman (1976; see also Saffman & Delbrück 1975). This model treats
the translation and/or rotation of a thin disk in a thin viscous sheet overlying a
liquid layer of infinite depth. The subphase underlying the viscous surface film has
a significant, and in some cases, dominant effect on the motion and so cannot be
neglected in analyses of the motion of a membrane-bound particle even in the limit
that the subphase is much less viscous than the surface film. The topic of resistance
from a subphase, as well as the effect of nearby boundaries, is also important for the
characterization of supported membranes (e.g. Sackmann 1996), for estimating the
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Figure 1. A hydrodynamic model of a membrane-bound object, modelled as a rigid cylinder,
translating in a fluid film above a (Newtonian) subphase of finite depth.

influence of microscope slides and nearby substrates on laboratory measurements of
lipid, protein and domain diffusion in membranes (Merkel, Sackmann & Evans 1989;
H. M. McConnell, private communication), and for quantifying the reduced lateral
diffusion of a protein in a bilayer which is itself surrounded by other bilayers (Peters
& Cherry 1982). Here we generalize Saffman’s analysis to account for the influence
on particle translation of a nearby rigid plane boundary below the membrane.

There are several situations where particle motion in a surface film (e.g. a monolayer
or bilayer) occurs. As mentioned, one example is the diffusion of proteins along a
cell membrane. Also, it is known that phase separation, leading to the formation
of finite-sized domains, occurs readily in surface monolayers consisting of multiple
chemical components (McConnell 1991); the smaller of these domains, generally
a few microns in radius, undergo Brownian motion while the larger domains are
readily moved using an electric field. A hydrodynamic model for the translation of
a membrane-bound protein or larger domain is sketched in figure 1. Typically, the
amphiphilic membrane has a viscosity ηm ≈ 1 P, the aqueous subphase has viscosity
η ≈ 10−2 P, and h has molecular dimensions, say 30 Å. Proteins typically have
molecular dimensions also, in which case R ≈ 30 Å, while phase-separated domains
characteristic of the liquid-expanded/liquid-condensed phase coexistence region have
typical radii R ≈ 5–100 µm (McConnell 1991). A dimensionless parameter Λ that
characterizes the flow involves the ratio of viscosities of the surface layer and the
subphase, Λ = ηR/ηmh, and may take on a wide range of values, 10−3 < Λ < 103.
The principal hydrodynamic contribution of the research reported here is to allow
for variable sublayer depths by considering configurations where the sublayer may
be very deep, H � R, have intermediate depths, H > R, as well as accounting for a
very thin subphase, H ≈ R for the protein diffusion applications or H � R for the
case of larger domains.

This ‘particle-trapped-in-a-plane’ geometry was first studied quantitatively by
Saffman (1976) who presented an approximate solution for the force acting on a
translating cylinder, which spans the width of a planar layer, and so is treated as a
thin disk translating in the plane z = 0. The membrane and subphase are treated as
continua and each is modelled as a constant-viscosity Newtonian fluid. The mem-
brane is assumed to remain planar and viscous stresses exerted from the subphase
are assumed to be transmitted uniformly across the thin surface film so that the
membrane flow is two-dimensional.

Saffman presented an approximate analytical solution valid for Λ = ηR/ηmh � 1.
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The problem was later examined in detail by Hughes, Pailthorpe & White (1981)
who developed an analytical solution for all Λ. A discussion of the application of
these hydrodynamic analyses to the diffusion of protein molecules in lipid bilayers
is given by Clegg & Vaz (1985); also Vaz et al. (1987) discuss the applicability of
these models for the interpretation of experiments on the diffusion of lipid molecules
in lipid bilayers. Recently, Bussell, Koch & Hammer (1992) and Bussell, Hammer
& Koch (1994) extended Saffman’s approximate solution in order to treat multiple
particles trapped in a bilayer. A common feature of all of these theoretical analyses
is that the sublayer is treated as infinitely deep and that the surface remains flat as a
result of the amphiphilic character of the membrane molecules producing a significant
resistance to surface distortion. A generalization of Saffman’s solution approach was
described by Stone & McConnell (1994) in a study of the dynamics of the shape
instabilities of nearly circular lipid domains; the finite thickness of the sublayer fluid
was also treated (Stone & McConnell 1995). In each of the above theoretical analyses
of planar, horizontally unbounded surface layers it was demonstrated that there was
no vertical component of velocity in the subphase so that the disk motion in the
surface layer resulted in a laminar sublayer flow restricted to planes parallel to the
surface. Here we will make this ansatz at the outset (§ 2) and at each step in our
analysis it should be clear that the solution described below satisfies the governing
equations and boundary conditions.

A valuable addition to the subject of protein diffusion in membranes was presented
by Evans & Sackmann (1988) who extended the hydrodynamic model to treat
translation and rotation of disk-shaped particles in membranes separated from a
substrate by a very thin film. However, the general case of arbitrary-thickness sublayers
has not been studied. The numerical results presented here demonstrate that the model
proposed by Evans & Sackmann (1988) may be quite accurate even when the sublayer
is not particularly thin, and scaling arguments, corroborated by examination of the
numerical results presented in §§ 3 and 4, demonstrate that ‘thin’ essentially means
H < RΛ−1, at least for viscous membranes Λ� 1.

We first present in § 2.1 the basic hydrodynamic description for the motion coupling
the surface film to the viscous subphase. The boundary value problem leads to dual
integral equations whose solution is outlined in § 2.2. Several asymptotic formulae,
valid either for Λ � 1 and deep sublayers, or for thin sublayers, are summarized
in § 2.3. Numerical results for the dimensionless force as a function of Λ and H/R
are given in § 3. In § 4 scaling arguments are presented for the two physical limits
of most interest, Λ � 1 and Λ � 1, and the orders of magnitude of the force as a
function of the sublayer depth H/R are deduced. The asymptotic formulae and the
scaling arguments are compared with the numerical results in order to demonstrate
the range of validity of the approximations. The structure of the surface velocity field
is also shown. Finally, we close with a comment regarding the effect of a finite-depth
sublayer on hydrodynamic interactions.

2. Problem formulation and solution
2.1. Governing equations

We first consider the form of the velocity field in the subphase for a particle translating
at a specified velocity along the surface, then analyse motion in the surface film, and
using both results determine the total force acting on the translating particle. The
interface is assumed to remain flat over distances much larger than the particle
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radius and so flow occurs bounded by two infinite horizontal boundaries (figure
1). We denote by u = (ur, uθ, uz) and p the subphase velocity and pressure fields,
respectively, and use a cylindrical (r, θ, z) coordinate system with z directed into the
subphase toward the rigid boundary. The Stokes and continuity equations apply in
the subphase liquid, which is treated as incompressible:

−∇p+ η∇2u = 0 and ∇ · u = 0. (1)

Everywhere along the bottom boundary z = H the no-slip condition, u = 0, must
be satisfied while in the plane z = 0 the disc-shaped particle translates with velocity
U . Assuming that uz ≡ 0 everywhere (which may either be demonstrated explicitly
or verified a posteriori ), the hydrodynamic pressure field associated with this surface-
driven Stokes flow is simply p ≡ constant (e.g. Stone & McConnell 1994). The velocity
field is thus confined to planes z = constant and has the form

ur(r, θ, z) = U cos θ

∫ ∞
0

A(k) sinh [k(H − z)] {J2(kr) + J0(kr)} dk, (2a)

uθ(r, θ, z) = U sin θ

∫ ∞
0

A(k) sinh [k(H − z)] {J2(kr)− J0(kr)} dk, (2b)

where Jn(s) is the Bessel function of the first kind and A(k) is a dimensionless function
to be determined. We note that if the surface film is surrounded above and below by
the same fluid and bounded at equal distances above and below by a rigid boundary,
then, owing to the symmetry of the configuration, equations (2a, b) may be applied
for all z provided z is replaced by |z|; an obvious generalization can handle different
fluids (e.g. Hughes et al. 1981) or different locations of the rigid boundaries.

The membrane velocity field um must conform to this same velocity representation
and by no-slip must equal the sublayer velocity evaluated at z = 0, i.e. um(r, θ) =
u(r, θ, z = 0):

umr(r, θ) = U cos θ

∫ ∞
0

A(k) sinh(kH) [J2(kr) + J0(kr)] dk, (3a)

umθ(r, θ) = U sin θ

∫ ∞
0

A(k) sinh(kH) [J2(kr)− J0(kr)] dk. (3b)

The membrane continuity equation ∇ · um = 0 is of course automatically satisfied.
The disk translates in the x–direction, U = U(er cos θ − eθ sin θ), so that for r < R

the unknown function A(k) satisfies

1 =

∫ ∞
0

A(k) sinh(kH) [J2(kr) + J0(kr)] dk for r < R, (4a)

−1 =

∫ ∞
0

A(k) sinh(kH) [J2(kr)− J0(kr)] dk for r < R. (4b)

As J2(s) + J0(s) = 2J1(s)/s, it is convenient to write (4a) as

r

2
=

∫ ∞
0

A(k)k−1 sinh(kH)J1(kr)dk for r < R. (5)

Differentiating (5) with respect to r yields (4b), and below we find it convenient to
work with (5).

For r > R we must consider the equation of motion for the monolayer or bilayer
film, which is assumed to be Newtonian (there are recent observations of non-
Newtonian effects in the flow of some surface films, e.g. D. K. Schwartz, G. G. Fuller,
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private communications). The film fluid is assumed to remain planar so that the
surface layer hydrodynamics are effectively two-dimensional. In this case a Stokes-
like equation is appropriate with an additional body force f exerted on the surface
layer by viscous stresses arising from motion in the underlying liquid (Saffman 1976).
Further, here we suppose that air or another fluid of viscosity much less than that
of the subphase overlays the system, though we note that the steps in the analysis
can be generalized to account for dynamical influences in an upper phase. The body
force per unit volume of the surface layer may then be written

f =
1

h
ez · σ|z=0, (6)

where σ is the stress tensor for the subphase flow, σ = −pI + η
(
∇u+ (∇u)T

)
. Thus,

the membrane motion satisfies

−∇pm + ηm∇2um + f = 0 and ∇ · um = 0, (7)

where ηm is the shear viscosity of the membrane fluid (note that the commonly used
‘surface shear viscosity’ is ηmh and has units of viscosity × length). Taking the curl of
equation (7) to eliminate the pressure and substituting the given expressions for the
velocity field we eventually arrive at a surface flow condition in the form∫ ∞

0

A(k)k2

[
k sinh(kH) +

η

ηmh
cosh(kH)

]
J1(kr) dk = 0 for r > R. (8)

At this point we have two equations, (5) and (8), which serve to define the function
A(k). To generalize these results to the case of a layer midway between rigid plane
boundaries with the same fluid on both sides, η in equation (8) is replaced by 2η.
Now, after scaling all lengths in (5) and (8) by R, and letting s = kR, r̄ = r/R, and
A(k) = RB(s), we obtain the dual integral equations∫ ∞

0

B(s)s−1 sinh(sH/R)J1(sr̄) ds =
r̄

2
for r̄ < 1, (9a)∫ ∞

0

B(s)s2 cosh(sH/R)
[
s tanh(sH/R) + Λ

]
J1(sr̄) ds = 0 for r̄ > 1, (9b)

where the dimensionless parameter Λ represents the effective viscosity contrast be-
tween the surface film and the subphase fluid,

Λ =
ηR

ηmh
. (10)

These dual integral equations, (9a) and (9b), with Bessel function kernels have the
form considered by Tranter (1966) and in the next subsection we outline how to solve
these equations numerically using a series representation for B(s), which we shall refer
to as ‘Tranter’s method’. Once B(s), or equivalently A(k), is known the detailed flow
field can be obtained from (2) and (3), and can be used to determine the membrane
pressure field pm and the total force acting on the translating disk.

It is straightforward, though tedious, to show that the membrane pressure field is
(the often discussed and measured ‘surface pressure’ corresponds to hpm)

pm(r, θ) =
ηmU

R
cos θ

∫ ∞
0

A(k)kr cosh(kH) [kR tanh(kH) + Λ] (J2(kr)− J0(kr)) dk.

(11)
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As mentioned earlier, we make the common assumption that the films remains flat,
even in the presence of variations of pm, owing to molecular scale resistance to surface
distortion (amphiphilic molecules resist such configurational changes). Also, the total
force F acting on the translating disc, the force being exerted both by the membrane
fluid over the perimeter 2πRh and the subphase fluid over the area πR2, may be
shown to be

F = −2πηRU

Λ

∫ ∞
0

B(s)s cosh(sH/R)
[
s tanh(sH/R) + Λ

]
J2(s) ds. (12)

The velocity field and torque for a disk-shaped particle rotating in a surface film
bounded below by a sublayer of finite depth can also be determined. The details are
similar to those given above and, since this problem is of less interest, the details are
not presented here. For both the translation and rotation problems, the determination
of the velocity field and corresponding force and torque depends on two parameters,
Λ and H/R.

2.2. Solution of the dual integral equations

Saffman (1976) and Hughes et al. (1981) studied the deep subphase limit H/R → ∞
and our equations reduce to theirs in this limit. Saffman presented an approximate
analytical solution for the force acting on the disc in the limit Λ � 1 (equation (18)
below). Hughes et al. applied to the dual integral equations an analytical procedure
using Erdélyi–Kober operators (e.g. Sneddon 1966) to develop a solution valid for
all Λ and in particular derived an approximate expression for the force valid for
Λ < 0.6 (equation (19)). We were not successful in applying the Erdélyi–Kober
operator technique to the set of dual integral equations developed in § 2.1 owing to
the more complicated form of the integral kernels. Instead we have developed a direct
numerical approach to solve for A(k) and so determine the flow field and force.

Tranter’s method (Tranter 1966) consists of representing the unknown function in
terms of a series of Bessel functions. Hence, we take

B(s)s2 cosh(sH/R)
[
s tanh(sH/R) + Λ

]
= s1−β

∞∑
m=0

amJ2m+1+β(s), (13)

where the {am} are constants to be determined and β (> 0) is a parameter which
controls the convergence of integrals and for which there is a ‘best’ value that captures
the singular nature of the mathematical problem in the neighbourhood of the disk
edge (e.g. Ungarish & Vedensky 1995; Tanzosh & Stone 1995). The representation (13)
automatically satisfies equation (9b); e.g. see Gradshteyn & Ryzhik (1965, equation
6.574.1). Substituting (13) into (9a) and following a series of steps first outlined by
Tranter to eliminate the dependence on r̄ (analogous to an orthogonality relationship),
we find that the {am} satisfy the (infinite) linear system of equations

∞∑
m=0

am

∫ ∞
0

s−2−2β tanh(sH/R)[
s tanh(sH/R) + Λ

]J2m+1+β(s)J2n+1+β(s) ds =
δ0n

2β+1Γ(β + 2)
, n = 0, 1, . . . ,

(14)

where Γ(s) is the Gamma function. It is now straightforward to determine the {am}
by truncating (14) to a finite system of N equations, evaluating the infinite integrals
involving products of Bessel functions using the numerical routines described by
Lucas (1995), and inverting the resulting matrix. We have performed calculations for
different values of β, which of course changes the specific values of the {am} but
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not any of the physical results. Choices of β closer to zero give more robust results
since the integrals converge more quickly and the resulting matrix problem is easier
to solve. Typically we choose N = 8− 20 and use larger N for smaller H/R.

Substituting (13) into (12), and using the identity (Gradshteyn & Ryzhik 1965,
equation 6.574.2) ∫ ∞

0

s−βJ2(s)J2m+1+β(s) ds =
δ0m

2βΓ(2 + β)
, (15)

one can show that the total hydrodynamic force acting on the cylinder is given by

F = − 2πηRUa0

Λ2βΓ(2 + β)
, (16)

which conveniently only involves a0. The drag coefficient is then defined as ζStokes ≡
|F |/|U |.

Once the force acting on a steadily translating disk is calculated the translational
diffusion coefficient follows from the Stokes–Einstein equation,

DT =
kBT

|F |/|U | =
kBT

ζStokes

, (17)

where kB is Boltzmann’s constant and T is the absolute temperature. Hence, we can
evaluate the diffusion coefficient for any values of the dimensionless sublayer depth
H/R and the viscosity ratio between the surface film and sublayer fluids as measured
by Λ. We will report in § 3 dimensionless values of ζStokes as a function of Λ and H/R.

2.3. Existing approximations for Λ = ηR/ηmh� 1 or thin sublayers

In Saffman’s original analysis, an approximate expression was derived for the force
exerted by the fluid on the particle in the limit Λ� 1 and H/R →∞. In our notation,
and accounting for resistance from a fluid below the membrane only, Saffman’s force
equation is

F Saffman = − 4πηRU

Λ
[
ln(2/Λ)− γ

] (Λ� 1), (18)

where γ ≈ 0.5772 is Euler’s constant. Hughes et al. (1981) developed an improved
asymptotic expansion for the force as a function of Λ:

FHughes = − 4πηRU

Λ
[
ln(2/Λ)− γ + (4/π)1/2Λ− 1

2
Λ2 ln(2/Λ)

] (Λ < 1). (19)

Hughes et al. compared this equation with their numerical results and found excellent
agreement for Λ < 0.6.

More recently Evans & Sackmann (1988) presented a simple model for accounting
for the additional resistance produced by a rigid planar boundary in the limit that the
sublayer is thin (see also Brochard, Joanny & Andelman 1987). Evans & Sackmann
introduced a friction parameter bs for the drag on the membrane from the substrate.
With the sublayer flow approximated as a simple shear flow, then f = −ηum/H (see
equations (7) and (22) in § 4) and bs = η/H , so the dimensionless parameter ε used
by Evans & Sackmann is in our notation

ε2 = Λ
R

H
(Evans–Sackmann). (20)

These authors also used a friction coefficient bp for the drag on the particle directly
from the substrate and for the idealized case considered here bp = bs. The force on the
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Figure 2. Variation of the dimensionless drag coefficient |F |/4πηR|U | as a function of H/R;
Λ = 0.004, 0.01, 0.03, 0.1, 1 and 100. Comparison is provided with three known limits: (i) the triangles
to the far right indicate the infinite-subphase limit, H →∞, calculated using the equation of Hughes
et al. (1981) for Λ < 0.6; (ii) the diamonds to the far right correspond to the infinite-subphase limit
for the case Λ→ ∞ where the dimensionless drag coefficient equals 2/π (see Appendix A); (iii) the
square symbols shown to the left are the predictions of the Evans–Sackmann formula (equation
(21)), which was developed for very thin sublayers.

translating object was then calculated for membrane-trapped particle motion above
thin sublayers to be

F E−S = −4πηRU

Λ

[
1

2
ε2 +

εK1(ε)

K0(ε)

]
, (21)

where the Kn(s) are modified Bessel functions.
We shall use the numerical solution presented in § 2.2 to illustrate in §§ 3 and 4 the

validity of these different approximations as Λ and H/R are varied. In addition, in
§ 4 (equation (23)), a drag expression for a finite depth subphase, analogous to (18),
is introduced.

3. Numerical results: force as a function of Λ and H/R
The numerical results are independent of the specific value of β and for the

calculations presented below we choose β = 1/8. We have verified that as the number
of terms N in the series solution (13) is increased there is convergence for the values
of the coefficients {am}. We showed in § 2.2 that the determination of the force acting
on the translating disc only requires knowledge of a0 (equation (16)). Using ten terms
in the series solution, we obtain about 1% accuracy in the values of a0 though, if
details of the velocity field are desired, more terms in the expansion are typically
required.

In figure 2 we illustrate the variation of the dimensionless force, or drag coefficient,
|F |/4πηR|U | (this choice for non-dimensionalization of the force is common), as
a function of the dimensionless sublayer depth H/R for 5 × 10−3 6 H/R 6 103.
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Figure 3. Variation of the dimensionless drag coefficient on a steadily translating disk as a function
of Λ and H/R. The triangles correspond to the approximate formula derived by Hughes et al.
(equation (19) above). The stars indicate our numerical results for H/R = 103 and are displayed
here simply to illustrate that H/R = 200 is nearly ‘infinite’ for the values of Λ shown.

Although for the case of protein diffusion in bilayers this hydrodynamic model only
seems reasonable provided H/R > 1, the translation of larger membrane-trapped
particles can correspond to H/R < 1, and such values are presented for completeness.
Results for six values of Λ are shown in figure 2 which span the most likely values
of the viscosity contrast to be expected for a wide range of situations. The numerical
results are shown by the solid curves and three asymptotic results are presented:
(i) triangles to the far right indicate the infinite-subphase limit calculated using the
asymptotic formula developed by Hughes et al., equation (19), (ii) diamonds to the
far right correspond to the infinite subphase limit with Λ→∞ for which there is the
analytical result F/4πηRU = 2/π (see Appendix A), (iii) the square symbols are the
predictions of the Evans–Sackmann formula (equation (21)) for thin sublayers. These
asymptotic approximations are included to emphasize the accuracy of the numerical
calculations. Detailed comparisons with the asymptotic formulae summarized in § 2.3
are presented in § 4. For now we observe that the numerical results are in excellent
agreement with available approximations for H/R � 1 and H/R � 1. Qualitatively,
for a fixed value of H/R and sublayer viscosity η, lower values of Λ correspond to
more viscous surface films and higher drag coefficients.

In figure 3 we show the variation of the dimensionless drag coefficient ζStokes/4πηR
as a function of Λ for seven different values of H/R. The triangles correspond to
the asymptotic approximation (19), valid for small Λ and an infinitely deep subphase,
H/R → ∞, and the stars are our numerical results for H/R = 103. The agreement
is excellent between the asymptotic approximation and the numerical results, and as
indicated by Hughes et al. their asymptotic formula (19) is very accurate for Λ < 0.6.
Similarly, we have verified that our results for Λ > 1 are in excellent agreement with
the numerical values for the force reported by Hughes et al. In figure 3 we observe the
significant influence of the rigid lower boundary as H/R decreases. For Λ > 10 and
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H/R > 1, however, there is only a small variation of the force as the sublayer depth
is varied. The dependence of the corresponding diffusion coefficient on the depth of
the sublayer then follows by combining the results shown in figure 3 with equation
(17). Thus, one can expect that measured diffusion coefficients for membrane-bound
proteins (Λ� 1) above a sublayer with H/R ≈ 1 are about half their value above an
unbounded subphase provided no other physical influences are hindering or otherwise
affecting the diffusion.

4. Dependence of the force on Λ and H/R
In order to explore completely the dependence of the friction coefficient on Λ and

H/R it is useful to provide a physical description of the typical forces to be expected
when an inclusion translates parallel to the membrane surface and so is resisted
by viscous stresses from both the membrane and the sublayer. A convenient way
to organize the presentation is in terms of the relevant geometrical and dynamical
length scales. There are two geometric length scales, R and H (we are viewing the
dynamics on scales large compared to h, so do not include h as an independent length
scale). In addition, for motions far from boundaries there is a naturally occurring
‘material’ length scale, `m = ηmh/η, which, referring to equation (7), characterizes the
distance at which viscous forces per unit volume due to membrane flow O(ηmU/`

2
m)

are comparable to the viscous forces per unit volume exerted on the membrane from
the sublayer O(ηU/h`m). Note that R/`m = Λ. We will see below that when the effect
of the nearby solid boundary is significant, there is an additional relevant length scale
`H = (`mH)1/2, which is therefore intermediate between H and `m.

There are two obvious limits, largely set by material properties, to consider:
Λ−1 = `m/R � 1 and Λ = R/`m � 1. In order to identify the important physical
balances we first consider an infinite subphase, which requires R, `m � H . When
`m < R, the flows in the monolayer and the sublayer are disturbed on a length scale
R and the drag force on the translating membrane-bound object is expected to be
O(ηRU), a result which is consistent with the largest viscous dissipation occurring
throughout a volume O(R3). On the other hand, for `m � R, representative of
protein motion in surface films much more viscous than the surrounding fluid, there
are long-range (compared to R) surface flows generated as elegantly analysed by
Saffman (1976). The local monolayer flow near the translating object is that for a
cylinder translating in a purely viscous fluid (Stokes flow) and this two-dimensional
flow involves a logarithmic variation of velocity disturbances (Stokes’s paradox). At
large distances the particle acts as a point force, and the viscous resistance from the
surrounding fluid phase is responsible for eliminating the divergence, with the cut-off
occurring at a distance O(`m). In this case, the force on the object is dominated
by gradients in the monolayer, and typical velocity variations in the neighbourhood
of the particle occur on a length scale R ln(`m/R) (see Appendix B). The force
follows from the product of the surface shear stress O(ηmU/R ln(`m/R)) and the
surface area 2πRh. Thus, for infinite depth sublayers the force is expected to be
O(ηmUh/ ln(`m/R)) = O(ηRU/Λ ln(Λ−1)), which is in agreement with the form of
equations (18) and (19). For the small-Λ limit, a discussion of the local flow and the
dependence of the velocity gradient, and so the force, on the logarithm of Λ is given
in Appendix B.

Of course, in any real experiment, there are other physical effects that can act to
eliminate the logarithmic divergence. Such possibilities include the effect of boundaries
at large radial distances, inertial effects in the monolayer, which enter at a typical
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Ordering of Dimensionless

length scales characterization

Force

ηRU

H � `H � `m � R H/R � Λ−1 � 1 O(R/H)
`m � `H � H � R Λ−1 � H/R � 1 O(R/H)
`m � `H � R � H 1� H/R � Λ O(1)
`m � R � `H � H 1� Λ� H/R O(1)

Table 1. Summary of different estimates for the resistance to motion of a membrane-trapped object
in the limit Λ = ηR/ηmh� 1. Moving in the table from top to bottom corresponds to progressively

increasing the thickness of the sublayer. `H = (ηmhH/η)1/2.

distance O(R/Rm), where Rm = RU/νm � 1 (νm is the kinematic viscosity of the
surface film) is the monolayer Reynolds number for the particle motion (Saffman &
Delbrück 1975), and a finite concentration of membrane-fixed particles (Dodd et al.
1995). The effect of a finite-depth subphase can also be important as we now detail.

In the presence of a finite-depth subphase, there are several additional possibilities
for the magnitude of the resistance to translation. In particular, ‘thin sublayers’ were
modelled by Evans & Sackmann (1988), though they did not specifically characterize
the regime of validity of their analysis. For thin films the sublayer was assumed to
undergo a simple shear flow u = (H − z)um/H , and so the equations of motion for
the film are

ηm∇2um − ∇pm −
ηum
Hh

= 0 and ∇ · um = 0. (22a,b)

This form of the momentum equation is commonly referred to as the Brinkman equa-
tion. An exact solution is possible for the two-dimensional translation (or rotation)
of a disc and the associated force is given in § 2.3. We note that a long-range motion
in the surface film is expected when `m > R, but now the subphase stresses arise from
the shear flow in the thin film (exerting forces per unit volume ηU/hH); the cut-off
distance is therefore `H = (ηmhH/η)1/2 rather than `m, as can be seen by comparing
the first and third terms in (22a).

There are thus, in general, three length scales to consider, R,H, and `m, as well
as the intermediate length scale `H , and so there are eight possible dynamical limits
depending on the relative sizes of these length scales. We shall discuss these limits
by considering a given physical system (Λ = R/`m fixed) and imagine varying the
sublayer from thin to thick. A summary of the different regimes is given in tables
1 and 2, and the regimes are also classified according to the relative magnitudes of
the two dimensionless parameters, Λ and H/R. We will see below that the different
regimes can be identified in the numerical results. Hence, these different physical
estimates provide a convenient way to organize an understanding of the resistance to
motion of membrane-trapped objects.

4.1. Λ� 1

Let us first consider Λ = R/`m � 1. The different possibilities as the film thickness is
varied are summarized in table 1, where the force for translation, normalized relative
to ηRU, is also given. For thin films, which means H � `m, it is easy to see that a
simple shear flow in the sublayer contributes a direct drag force πR2 × ηU/H on the
particle’s lower surface. It is also true, although on first examination this may appear
surprising, that the incompressible monolayer flow makes a contribution of equal
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Figure 4. Force as a function of H/R for Λ > 1. The solid curves are calculated by solving the dual
integral equations. The short-dashed lines on the right indicate the infinite-subphase limit, H/R � 1
(calculated numerically) and the long-dashed curves are calculated from equation (21) in the limit
ε� 1, i.e. F/4πηRU = (R/H)( 1

2
+ (H/RΛ)1/2).

Ordering of Dimensionless

length scales characterization

Force

ηRU

H � `H � R � `m H/R � Λ� 1 O(R/H)

H � R � `H � `m Λ� H/R � 1 O

(
1

Λ ln((H/R)Λ−1)

)
R � H � `H � `m 1� H/R � Λ−1 O

(
1

Λ ln((H/R)Λ−1)

)
R � `m � `H � H 1� Λ−1 � H/R O

(
1

Λ ln(Λ−1)

)
Table 2. Summary of different estimates for the resistance to motion of a membrane-trapped object
in the limit Λ = ηR/ηmh � 1. The intermediate length scale `H = (ηmhH/η)1/2 plays an important
role in determining the variation in the force as the sublayer thickness varies. Moving in the table
from top to bottom corresponds to progressively increasing the thickness of the sublayer.

magnitude (and, in fact, equal value). Indeed, for a finite surface-film viscosity, no
matter how small, the translation of the membrane-bound object generates motion
in the film and sublayer on the scale R and, as a consequence of drag from the
substrate, the motion is accompanied by a monolayer pressure drop O(ηRU/hH),
which, acting over the particle circumference 2πRh, contributes a force O(ηR2U/H).
In fact, expanding the thin-sublayer result of Evans & Sackmann, (21), for the large-Λ,
thin-sublayer limit, i.e. ε� 1, yields F/4πηRU ≈ (R/H)( 1

2
+ (H/RΛ)1/2).

As H increases, it first becomes bigger than the small length `m, but as it remains
smaller than R the force remains O(ηR2U/H). Increasing H further leads to the
subphase becoming thicker than the particle scale R, at which point the diminished



Hydrodynamics of particles embedded in a surfactant layer 163

viscous stresses lead to a force O(ηU/R × πR2) = O(ηRU), and the drag becomes
independent of H .

In figure 4 we present the dimensionless drag force for Λ > 1 and 10−2 6 H/R 6
102. The numerical results (solid curves) are compared with the thin layer prediction
F/4πηRU ≈ (R/H)( 1

2
+ (H/RΛ)1/2) (long-dashed curves) and the infinite-sublayer

limits (horizontal dashed lines, calculated numerically by taking H/R = 103) are
shown also. There is very good agreement between the thin-layer approximation and
the numerical results for H/R < 0.2. The two distinct possibilities for the magnitude
of the force (H/R < 1, H/R > 1) described in the previous two paragraphs provide a
good way to estimate the force for all H/R provided Λ > O(1). The crossover between
the two force estimates occurs at H/R ≈ 1.

4.2. Λ� 1

The more varied, and so dynamically more interesting, case is that of a very thin
viscous membrane Λ = R/`m � 1, summarized in table 2. If the layer is very thin,
with H � `H � R, then the dominant resistance comes from the shear flow below
the particle, and, as mentioned above, from the pressure drop in the incompressible
monolayer flow due to overcoming drag from the substrate, and so the force is
expected to be O(ηR2U/H).

On the other hand, as the sublayer is made deeper, the dominant contribution
to the force comes from monolayer velocity gradients (i.e. shear stresses) that occur
over a long distance (greater than R). The logarithmic divergence of the velocity
disturbances must be cut off by sublayer motions and the cut-off length scale is the
smallest of `H and `m. For example, after the thin-film limit, an increase in H may be
interpreted as `H lying between R and `m. Thus, although the flow near the particle
corresponds closely to that around a cylinder, beyond a distance `H the flow resembles
the three-dimensional motion due to a point force in the film above the subphase. In
the neighbourhood of the particle the velocity gradients are O(U/R ln(`H/R)) and the
corresponding force is F = O(ηUR/Λ ln((H/R)Λ−1)) and this contribution is larger
than that from the sublayer due to the simple shear flow below the particle. Further
increases in H move the flow out of the thin film limit, i.e. H/R � 1, but the force
maintains the order of magnitude just obtained. Finally, increasing H so much that
`H increases beyond `m, corresponds to the deep-subphase limit studied by Saffman
for which F = O(ηUR/Λ ln(Λ−1)). Therefore, we see that the boundary influence is
expected to be important for `H < `m or H < RΛ−1.

A detailed analysis of this intermediate limit is possible, following the approach
utilized by Saffman (1976), and this calculation is given in Appendix B. In particular
for R,H � `m, we find

F finite depth = − 4πηRU

Λ
[
ln(ΛR/4H)−1/2 − γ

] . (23)

In figure 5 we focus on the small-Λ limit. The numerical results are shown as
solid curves, the approximation for intermediate depths, equation (23), is shown as
dot-dashed curves, and the predictions of the Saffman formula are shown at the far
right with a star. For thin layers we have also compared the results with a three-
term expansion of the Evans–Sackmann formula (21), i.e. ε � 1 and F/4πηRU ≈
R/H( 1

2
+ (H/RΛ)1/2 +H/2RΛ). Each of these simple approximations appears useful

for a range of H/R, indicating the utility of the physical arguments given here, and
the three approximations together allow a simple reconstruction of the entire curve
for the dependence of the drag coefficient.
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Figure 5. Force as a function of H/R for Λ� 1; solid curves are the numerical results calculated
by solving the integral equations. The predictions of the Saffman formula for the infinite-subphase
limit, H/R � 1, are shown as ∗, the long-dashed curves are the predictions of the Evans–Sackmann

formula expanded to three terms, F/4πηRU = (R/H)( 1
2

+ (H/RΛ)1/2 +H/2RΛ) and the dot-dashed
curve is the intermediate approximation, equation (23), for which the nearby rigid boundary provides
a cut-off length scale of the logarithmically varying velocity disturbances of the two-dimensional
surface flow near the translating disk.
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Figure 6. Force on the translating membrane-bound object for different Λ where the force is
normalized using the value calculated according to the Evans–Sackmann ‘thin-layer’ formula,
equation (21). The results demonstrate the range of validity of the Evans–Sackmann ‘thin-film’
formula and show the emergence of the effect of the ‘deep’ sublayer for H/`m > 1 for Λ < 1.
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Figure 7. Radial velocity field as a function of the dimensionless radial distance for two sublayer
depths, H/R = 2000 (solid curves) and H/R = 10 (long-dashed curves), and three values of
Λ = 100, 1 and 0.01; short-dashed lines indicate slopes of −1 and −2. Also shown on the Λ = 0.01,
H/R = 10 plot are circles corresponding to the velocity field calculated by Evans & Sackmann
(1988) based on the thin-film model. The inset illustrates Λ = 0.01 and H/R = 2000 which has been
calculated to large enough r that the transition from a decay rate r−1 to r−2 is observed (the dashed
curves have slope −1 and −2).

4.3. Domain of validity of the Evans–Sackmann approximation

The crossover indicated above where the effect of the solid boundary is expected to
be significant is studied in figure 6 by plotting the drag force, normalized by the
complete Evans–Sackmann formula, as a function of (H/R)Λ. In effect, this graph
demonstrates the utility of the Evans–Sackmann formula (21). We thus see that the
Evans–Sackmann drag formula provides an excellent approximation for H/R < Λ−1

for Λ < 1. In other words, the ‘thin-layer approximation’ is useful for H < `m,

or typically H/R
<∼ 100, and holds for not so thin sublayers. Hence, the complete

Evans–Sackmann formula correctly describes the first three regimes indicated in table
2 (and an expansion of the Bessel functions in equation (21) yields the functional
forms shown). In figure 6 we have also displayed results for Λ = 10 and 100. Overall,
we observe that the Evans–Sackmann formula can be used for any Λ with an error
less than 20% provided (H/R)/Λ < 1.

4.4. Velocity fields and hydrodynamic interactions

A final feature of these flows that we can investigate is the detailed velocity field. We
first present the results of several simulations showing the structure of the surface
velocity field and then we summarize in tabular form the manner in which the velocity
decays in the far field. The section concludes with a remark about hydrodynamic
interactions among surface-bound particles.

In figure 7 we show the variation of the radial component of the surface velocity
field as a function of distance (r) for three different values of Λ and two sublayer
depths, H/R = 2000 (solid curves) and H/R = 10 (long dashed curves). The shallow-
sublayer limit H/R = 1 is illustrated in figure 8. There are several features worth
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Figure 8. Radial velocity field as a function of the dimensionless radial distance for H/R = 1 and
four values of Λ = 100, 1, 0.1 and 0.01; solid curves denote the numerical solution and the symbols
are the velocity field calculated by Evans & Sackmann (1988) based on the thin-film model.

noting. First, as the sublayer thickness decreases the velocities decrease, as expected.
Secondly, for the deep-sublayer limit, H/R = 2000, the velocity decays as O(r−1) for
Λ > O(1), while for Λ < O(1) there is a finite distance, predicted by the analytical
arguments of Saffman (1976) (see Appendix B) to be r = O(`m = RΛ−1), where the
velocities remain O(1) and beyond which the velocities decay more rapidly as O(r−1).
Thirdly, in the shallow sublayer limit, the velocity clearly exhibits a decay rate O(r−2)
(figure 8), which is the decay rate expected owing to the influence of the nearby rigid
boundary. Finally, we note that for the deep-sublayer limit, H/R � 1, an O(r−2) decay
rate is also expected but requires distances r > O(H). This transition from a r−1 decay
to a r−2 decay is shown in the inset of figure 7 for the case Λ = 0.01 and H/R = 2000.
The O(r−2) rate of decay is also to be expected eventually of the simulations with
large Λ and H/R = 2000, but requires r > O(H) and at these distances the velocities
become very small indeed. The O(r−2) rate of decay is predicted by the detailed
velocity field calculated by Evans & Sackmann (1988) for thin sublayers, and may
be thought of as arising from the two-dimensional surface pressure field that decays
for translational motions as O(r−1) (the pressure is harmonic), which requires that
|um| = O(r−2) (see equation (22)); alternatively, the faster decay of the velocity field
may be considered to be analogous to the similar decay in the three-dimensional
viscous flow field of a point force tangent to a rigid boundary.

In figure 8, we compare the detailed velocity field calculated by Evans & Sackmann
(1988) (the symbols) with the complete numerical solution for a sublayer depth
H/R = 1 (solid curves). There is excellent agreement for Λ 6 0.1, but the approximate
solution is clearly less accurate for Λ > 1. In both cases, though, we observe that the
influence of the nearby boundary leads to velocities that decay as O(r−2). As a further
illustration that for small Λ the Evans–Sackmann model has a wide applicability, we
show in figure 7 the model’s predictions (circles) of the velocity field for Λ = 0.01 and
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Λ� 1 um/U = O(R2/r2)
H < R for — —

r > R

Λ� 1 um/U = O(R/r) um/U = O(RH/r2)
H > R for for —

R < r < O(H) r > O(H)

Λ� 1 um/U = O(1) um/U = O(`m/r) um/U = O(`mH/r
2)

H > `m > R for for for
R < r < O(`m) O(`m) < r < O(H) r > O(H)

Λ� 1 um/U = O(1) um/U = O(`2
H/r

2)
`m > `H > R for for —

R < r < O(`H ) r > O(`H )

Λ� 1 um/U = O(R2/r2)
`m > R > `H for — —

r > R

Table 3. Qualitative description of the decay of the surface velocity field as a function of distance
from the object (logarithmic factors typically appear in the detailed expressions for the velocity).
`m = ηmh/η, `H = (`mH)1/2, Λ = R/`m.

H/R = 10. There is excellent agreement as ‘thin’ really corresponds to the requirement
H < `m = RΛ−1, as has been previously indicated.

A qualitative description of the transitions in the velocity decay rate as a function
of distance from the object for the different Λ regimes is summarized in table 3.

Influence on hydrodynamic interactions: With an understanding of the structure
of the velocity field, it is natural to close this discussion by thinking about other
problems for which the boundary influence may be important. Recently, Koch and
Hammer and coworkers (Bussell et al. 1992, 1994; Dodd et al. 1995) examined hydro-
dynamic interactions among integral membrane proteins (Λ� 1) since hydrodynamic
interactions should be expected to decrease diffusivities and all previous studies had
neglected to account for this important effect.

The basic physical idea underlying the asymptotic analysis of the hydrodynamic
interactions for a dilute system of proteins is clearly stated by these authors: on length
scales comparable to the particle scale, or the interparticle spacing d provided d < `m,
the local flow is two-dimensional and velocity disturbances vary logarithmically.
Beyond a distance `m, the surrounding fluid exerts stresses that cause the velocity
disturbance to decay as O(U`m/r ln(Λ−1)) (e.g. see the detailed analysis of Saffman’s
results given in Appendix B, and equations (C 1) and (C 3)). Calculations of the
diffusivities as a function of the area fraction φ show that the variations from
the infinite-dilution limit can be approximately summarized as (i) a decrease in the
diffusivity that can be described by an increase in the effective shear viscosity of the
membrane fluid from ηm to ηm(1 + 2φ), i.e. the Einstein viscosity in two dimensions,
and (ii) an increase in the diffusivity owing to the velocity disturbances created by the
other particles, which produces a change O(φ/ ln(Λ−1)) (Bussel et al. 1994). Term (i)
is generally the most significant effect.

Thus, we may indicate the approximate effect of a nearby rigid planar substrate on
the hydrodynamic interactions among integral membrane proteins in the dilute limit
φ � 1, with H < `m, which is when the (small) area fraction of proteins and the
finite depth are both significant. In particular, for free suspensions the logarithmic
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divergences are now cut off on a length scale `H rather than `m. Therefore, we should
expect the qualitative structure of the results of Bussel et al. (1994) to be applicable
to the finite-depth case (with changes in the order-one coefficients) except that Λ−1

(their λ) should be replaced by `H/R. The numerically most important effect is still a
decrease in the diffusivities due to the increased effective viscosity of the membrane
(independent of H/R). Nevertheless, this physical argument shows that the influence
of the disturbance flows produced by the other particles, which tend to increase the
diffusivities, is diminished whenever `H < `m. Finally, these authors also studied fixed
beds as models for plasma membranes (Dodd et al. 1995). We expect their results
to hold for finite-depth sublayers provided the Brinkman screening length Rφ−1/2 is
smaller than `H .

5. Concluding remarks
In this paper we have described an exact solution for the translation of a circular

cylinder, or disk, in a thin, flat surface film, which is a configuration that models the
movement of membrane-trapped objects common in biology and physical chemistry.
Numerical results for the drag on, or friction coefficient of, a steadily translating
particle were presented for wide ranges of the dimensionless sublayer depth H/R and
the viscosity ratio parameter Λ, i.e. F = ηRUF(Λ,H/R) where F is determined nu-
merically. The infinite- and thin-subphase limits previously analysed were recovered.
The translational diffusion coefficient follows from DT = kBT/ηRF. Most impor-
tantly, the numerical results are well represented for all H/R by the combination of
the Evans–Sackmann thin-sublayer formula (21) and the infinite-sublayer limit (for
example, the equation of Hughes et al. (19) for Λ 6 0.6; for Λ > 0.6 a numerical
calculation is, in general, required).

We have further demonstrated that the detailed dynamical response is understand-
able in terms of the relative sizes of the four length scales R,H, `m = ηmh/η and
`H = (ηmhH/η)1/2. The order of magnitude of the force on the membrane-bound ob-
ject is controlled by the velocity gradients in the neighbourhood of the object, which
may be affected by long-range fluid motions. For the common viscous monolayer or
bilayer system, Λ � 1, there is a long length scale `m or `H beyond which the sub-
phase resistance can no longer be neglected dynamically, and in these circumstances
the local velocity gradient in the surface film near the translating particle varies as
U/R ln(`/R), where ` = min(`m, `H ). We also derived an asymptotic result, equation
(23), for the drag valid for finite-depth sublayers in the limit Λ � 1. Tables 1 and 2
summarize approximate scaling relationships for the order-of-magnitude of the force
as H/R and Λ are varied and figures 4–6 illustrate the accuracy of the different
analytical approximations. We closed by illustrating the form of the surface velocity
fields and the qualitative modification to be expected when studying hydrodynamic
interactions.
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thoughtful and insightful comments, including one referee who indicated the approach
for developing the asymptotic solution for the finite layer described in Appendix B.
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Appendix A. The limit Λ� 1, H/R � 1

In this Appendix we provide a brief derivation of the force and simplified flow field
for the limit Λ� 1 and an infinitely deep fluid, H/R � 1. This limit was previously
discussed by Hughes et al. (1981) though we feel it is easier to see the form of the
result given the simplified presentation described in this paper of the solution to the
dual integral equations.

We begin with (14). For H/R → ∞ and Λ → ∞, the leading-order approximation
to the integral is

∞∑
m=0

am

∫ ∞
0

s−2−2βJ2m+1+β(s)J2n+1+β(s) ds =
Λδ0n

2β+1Γ(β + 2)
, n = 0, 1, . . . . (A 1)

The integral is given in Gradshteyn & Ryzhik (1965, equation 6.574.2); it exists for
β > −1, and so in this case choosing β = −1/2, we have∫ ∞

0

s−1J2m+1/2(s)J2n+1/2(s) ds = δnm. (A 2)

Therefore, equation (A 1) leads directly to

am =

√
2Λ

π1/2
δ0m. (A 3)

The force on the translating disk is given by (16), and only involves a0, and so we
obtain

F

4πηRU
=

2

π
. (A 4)

As pointed out by Hughes et al. this result is greater than half the force acting on
a rigid disk translating edgewise in a viscous fluid, for which one finds 4/3π instead
of 2/π. This difference (and indeed the increase) is a consequence of the flow being
confined to move in planes z = constant owing to the surface film, however thin,
requiring the surface to remain flat.

Appendix B. An approximate force–velocity relation for Λ� 1 and a
finite-depth subphase

Saffman (1976) developed an approximate solution for an unbounded subphase
by considering the point-force limit of the governing equations with Λ � 1. This
calculation, valid for R � `m � `H � H , is extended here to the finite-depth
case with R,H � `H � `m. The calculation uses the idea of matched asymptotic
expansions to describe both the region at large distances where the particle looks like
a point force (the ‘outer’ region) as well as the region near the particle where the fluid
motion is nearly that of a translating cylinder (the ‘inner’ region). We are indebted to
a referee for suggesting this calculation.

We replace the particle by a point force F = Fex acting on the fluid and so first
solve a modified form of (7)

−∇pm + ηm∇2um + f +
Fδ(r)

2πrh
ex = 0 and ∇ · um = 0, (B 1)

which describes two-dimensional surface flow in the outer region driven by a point
force parallel to the direction of particle motion.
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Taking the curl of (B 1) eliminates the pressure, using the identities for cylindrical
coordinates that

∇ ∧
{
δ(r)

r
ex

}
= − sin θ (er ∧ eθ)

d

dr

(
δ(r)

r

)
and

∫ ∞
0

d

dr

(
δ(r)

r

)
rJ1(kr) dr = −k,

(B 2)

and then substituting the known form of the velocity fields for a finite-depth subphase,
equations (3a) and (3b), leads to

UA(k) sinh(kH) =
F

4πhηm

1[
k + (η/ηmh) coth(kH)

] . (B 3)

In the limit H →∞ we obtain Saffman’s original result (note that there are differences
of factors of 2 since Saffman accounts for fluid on both sides of the membrane).

The radial component of the corresponding outer flow then follows from (3a):

uoutermr (r, θ) =
F cos θ

4πhηm

∫ ∞
0

[J0(kr) + J2(kr)]

k + (η/ηmh) coth(kH)
dk

=
F cos θ

4πhηm

∫ ∞
0

[J0(s) + J2(s)]

s+ (ηr/ηmh) coth(sH/r)
ds. (B 4)

The inner limit of the outer solution is obtained by letting r → 0. In this limit the
integral is dominated by the contribution from s near zero in (B 4). We may thus
follow the spirit of Saffman’s asymptotic analysis and add and subtract the integral
of the denominator from 0 to 1. As such we may write

lim
r→0

4πhηm
F cos θ

uoutermr (r, θ) = lim
r→0

∫ ∞
0

[J0(s) + J2(s)]

s+ (ηr/ηmh) coth(sH/r)
ds (B 5a)

=

∫ 1

0

ds

s+ (ηr/ηmh) coth(sH/r)
+

∫ ∞
1

J0(s)

s+ (ηr/ηmh) coth(sH/r)
ds (B 5b)

+

∫ 1

0

J0(s)− 1

s+ (ηr/ηmh) coth(sH/r)
ds+

∫ ∞
0

J2(s)

s+ (ηr/ηmh) coth(sH/r)
ds (B 5c)

≈
∫ 1

0

s ds

s2 + (ηr2/ηmhH)
+

∫ ∞
1

J0(s)

s
ds+

∫ 1

0

J0(s)− 1

s
ds+

∫ ∞
0

J2(s)

s
ds, (B 5d)

where we have used the small-argument expansion of coth(t) ≈ t−1 in the first term
on the right-hand side of (B 5d) and neglected the coth term in all of the non-
singular integrals. Evaluating each of the integrals yields (Abramowitz & Stegun
1972, equations 11.1.20 and 11.4.16)

uoutermr (r, θ) ≈ F cos θ

4πhηm

[
−1

2
ln

(
ηr2

ηmhH

)
+

1

2
− γ + ln 2

]
, (B 6)

where γ ≈ 0.5772 is Euler’s constant. As a referee pointed out, this result can also be
justified by a more systematic asymptotic analysis. In particular, the integral (B 5a)
can be split at an intermediate length scale δ, where r/`H � δ � 1 with `2

H = H`m,
`m = ηmh/η, and under the stated limits H � `H . Then, as the denominator simplifies
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to s+ (ηr/ηmh) coth(sH/r) ≈ s for s > δ, (B 5a) may be written

lim
r→0

4πhηm
F cos θ

uoutermr (r, θ) = lim
r→0

∫ ∞
0

[J0(s) + J2(s)]

s+ (ηr/ηmh) coth(sH/r)
ds (B 7a)

= lim
r→0

∫ δ

0

[J0(s) + J2(s)]

s+ (ηr/ηmh) coth(sH/r)
ds+

∫ ∞
δ

[J0(s) + J2(s)]

s+ (ηr/ηmh) coth(sH/r)
ds (B 7b)

≈
∫ δ

0

s

s2 + r2/`2
H

ds+

∫ ∞
δ

[J0(s) + J2(s)]

s
ds (B 7c)

≈ 1

2
ln

(
δ2 +

r2

`2
H

)
− 1

2
ln

(
r2

`2
H

)
+

∫ ∞
δ

J0(s)

s
ds+

∫ ∞
0

J2(s)

s
ds (B 7d)

which, in the limit r/`H � δ � 1, and using the tabulated integrals indicated above,
then leads to (B 6), which is, of course, independent of δ.

On the other hand, the solution for the two-dimensional Stokes flow of a translating
cylinder, which satisfies the no-slip boundary condition on the surface, gives (Batchelor
1967)

uinnermr (r̄, θ) = U cos θ

[
1 + β

(
− ln r̄ +

1

2
− 1

2r̄2

)]
, (B 8)

where r̄ = r/R and β is a constant to be determined by imposing the boundary
condition at large distances. Matching the inner limit of the outer approximation
(B 6) and the outer limit of the inner approximation (B 8) gives

β =
F

4πηmhU
and U =

F

4πηmh

(
ln

(
ΛR

4H

)−1/2

− γ
)
. (B 9)

Thus, we see that the drag force exerted on the particle, accounting for a resistance
from the finite-depth subphase, corresponds to −F in equation (B 1), and so

F finite depth = − 4πηmhU

ln(ΛR/4H)−1/2 − γ , (B 10)

which was compared with the numerical results in figure 5.

Appendix C. The structure of the surface velocity field for Λ� 1

In this Appendix we justify the physical description utilized in the main body of
the paper that for Λ � 1 and an infinitely deep subphase, corresponding to small
objects in viscous fluid membranes, the typical velocity gradients in the membrane
and measured near the particle occur on the length scale R ln(Λ−1). This result, though
perhaps not fully appreciated, is demonstrated in a straightforward way using the
analytical results given by Saffman (1976) and is similar to other two-dimensional, or
‘nearly two-dimensional’ flows involving cylindrically shaped objects. We could have
presented these ideas using the point force solution for the finite-depth subphase, as
developed in Appendix B, but since Saffman’s calculation, and the Saffman–Delbrück
model are familiar, it seemed appropriate to present a discussion based upon this
simpler configuration.

We consider fluid motion in the surface film. At large distances from the translating
object (i.e. in the ‘outer’ region), the flow may be characterized as that due to a
point force, while the local flow in the neighbourhood of the object is basically
the two-dimensional flow due to a translating cylinder. The point force solution to
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the monolayer flow equation (B 1), including resistance offered by the unbounded
subphase with no fluid above, yields a radial velocity field (r̄ = r/R)

uoutermr (r̄, θ) =
F cos θ

4πhηm

∫ ∞
0

J0(s) + J2(s)

(s+ Λr̄)
ds, (C 1)

which is the H →∞ limit of (B 4). We note that for large r̄, i.e. r̄Λ > O(1), the integral
is O(r̄−1) and so the far field has the usual unbounded Stokes flow decay rate.

Since the ‘inner’ limit of the outer equation (C 1) is (Saffman 1976)

lim
r̄→0

uoutermr ≈
F cos θ

4πhηm

[
− ln r̄ +

(
ln(Λ−1) + 1

2
− γ + ln 2

)]
+ · · · , (C 2)

then matching with the limit r̄ →∞ of the inner solution (equation B 8) shows

U =
F

4πηmh
(ln(2/Λ)− γ). (C 3)

We thus observe that the local velocity field near the object has the form

uinnermr (r̄, θ) = U cos θ

[
1− 1(

ln(2/Λ)− γ
) (ln r̄ − 1

2
+

1

2r̄2

)]
, (C 4a)

uinnermθ (r̄, θ) = U sin θ

[
−1 +

1(
ln(2/Λ)− γ

) (ln r̄ +
1

2
− 1

2r̄2

)]
. (C 4b)

The first term in each of these expressions corresponds to translation of the ob-
ject and the second term shows that velocity gradients near the object are in fact
O(U/R ln(Λ−1)).

It is worthwhile to close with an observation concerning four similar problems
involving the translating cylinder geometry: (i) a long slender object with length L�
R, where R is the cylinder radius, translating in an unbounded fluid at low Reynolds
numbers, R = RU/ν, with R < R/L � 1; (ii) a long slender object translating
with R/L < R � 1; (iii) a disk-shaped object translating in a viscous membrane
with Λ� 1 (Saffman 1976); and (iv) translation with Λ� 1 in a viscous membrane
adjacent to a sublayer of finite depth H . In each case the local two-dimensional Stokes
flow corresponding to a cylinder translating parallel or perpendicular to its axis does
not have a solution (Stokes’s paradox for the case of translation perpendicular to the
axis of the cylinder), but, beyond some distance `, the flow problem is well posed and
a solution exists. The basic mathematical structure is as described in this Appendix.
Velocity gradients in the neighbourhood of the object do not occur on the length
scale R but rather occur on the longer length scale R ln(`/R), where ` = L, RR−1,

`m = RΛ−1, or `H = R
(
RΛ/H

)−1/2
for problems (i)–(iv), respectively. In the language

of matched asymptotic expansions, working in a frame of reference with the object
fixed and a uniform flow at large distances, it is necessary to pose an ‘inner’ expansion

beginning with a term O(
[
ln(`/R) + constant

]−1
), while the outer expansion begins

with a term O(1); for example, see equation (C 4). Thus, the idea that the velocity
gradients occur on a scale larger than the particle radius R, and involve a logarithmic
factor of the ratio of two length scales, arises in several familiar circumstances.
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